
Series studies of self-avoiding walks near the theta -point on 2D critical percolation clusters

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 2745

(http://iopscience.iop.org/0305-4470/25/10/006)

Download details:

IP Address: 171.66.16.58

The article was downloaded on 01/06/2010 at 16:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 25 (1992) 2745-2751. Printed in the UK 
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critical percolation clusters 
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Abstract. The thermally weighted average e n d - t o a d  distance (RN) of interacting self- 
avoiding walks (SAWS) are obtained here enumerating all the (finite) N-stepped SAW 

configurations an the infinite percolation cluster of bond diluted square lattice at the 
percolation threshold. Averaging over 250 percolation clusters and cumeratin! all the 
possiblesawroothemforNupto31,(~)isfittedtoascalingform(R~)-NNIY/(N*r).  
where T=( T - @ ) / O  is the temperature interval away from the @-point, 4 is the crossover 
exponent and Y O  is the trieritical size exponent. The best fit is obtained for 8=0.71 
(compared to @,=l.54 on a pure square lattice), u*=O.74 (compared to v:=$-O.57 in 
two dimensions) and $=0.20. We also obtain an estimate of the SAW size exponent vc 
for collapsed phase an the percolation cluster. 

1. Introduction 

The manifestation of the excluded volume effect of polymer chains trapped in a porous 
medium, modelled by self-avoiding walks (SAWS) on a quenched random lattice, has 
recently been studied with much interest [l-81. While at high temperatures (or in good 
solvents) the statistics are still being debated (effect of percolation fractal in the random 
SAW limit) [l-S], the questions regarding the effect ofpercolation fractal on the tricritical 
&point [6] and on the tricritical size exponent U’, have already been addressed [7,8]. 
Unlike in the high temperature ( T >  0) SAW limit, where the percolation fractal effect 
on the SAW size exponent us seems to be small (both theoretically [3,4] and in 
simulations [2,3,5]), the effect of percolation fractal on the tricritical excluded volume 
size exponent U’ (at T = 0) has been predicted to be quite prominent. In particular, 
the Flory approximation for U’ (Roy et al[7]) predicted (see the appendix) U’ -0.68 
(compared to v;=O.S8 on a pure lattice with a similar approximation) and that of 
Chang and Aharony [SI predicts U’ =0.72 (compared to U,” = 0.66, with their approxi- 
mation on a pure lattice; exact U: =$=O.S7) on two-dimensional (ZD) percolation 
clusters at the percolation threshold; both indicating large deviation (increase) from 
the pure lattice value. Also, a recent series study of the partition function zeros [6] 
indicated a non-vanishing theta point value: 0 = 0.67 (in units of non-bonding nearest 
neighbour monomer-monomer interaction energy) on a bond diluted square lattice at 
the percolation threshold (compared to Oo=1.S4 on a pure square lattice). This 
(non-vanishing &point value) is quite significant in view of the ramified structure of 
the percolation cluster, and for observing the tricritical (at T =  0)  as well as the 
collapsed phase (at T <  0) of SAWS on the percolation cluster. 
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We report here the results of a series study of SAWS on a Monte Carlo generated 
percolation cluster on a bond diluted square lattice. The average end-to-end distance 
( R N )  of N-stepped SAWS on a critical percolation cluster, averaged using appropriate 
thermal weights determined by the ratio of the number of interacting bonds (with unit 
attractive interaction through the bonds between the nearest neighbour sites visited by 
the SAW) and the temperature T, is fitted, after configurational averaging over percola- 
tion clusters (denoted by overhead bar), to a scaling form 

- (RzNj __,.,._,_.I* 

f (N-7)  (1) - 
where T =  (T-O) /B,  4 denotes the crossover exponent and f denotes the scaling 
function. Enumerating results for all the possible SAW configurations on the critical 
percolation clusters up to N = 31, when averaged over about 250 percolation clusters, 
gives the best fit values as 0=0.71, us=0.74 and +=0.20 for the &point as well as 
that for the tricritical behaviour at the &point on 2D percolation clusters. Our study 
also indicate vC-0.73 (compared to v z = f  in pure lattice) for the size exponent of 
the collapsed ( T <  0) SAW configuration on the critical percolation cluster. 

2. Simulation and results 

r- r l -  -:-..>-A:..- ___^A-#.- ~- O A u O A  *-a&:-- TT-:-- - X " - - L . .  n..-l- __^^_-_ 
111 LllC s,,,I"IaIIuII W G  LaLC a,, O"* ou o l 4 " a ' ~  Id.L,LL.C. "bMg a I",ULI,c- LdllU pugLa,,, wc: 

first generate the bond diluted lattice configuration and with bond occupation con- 
centration p = f = p c ,  the percolation threshold. We search for the cluster which connects 
the upper boundary to the lower boundary on the lattice and if there is a break, we 
discard that cluster and start searching for a new one. As soon as we get a connected 
cluster we isolate that cluster as the infinite (spanning) percolation cluster. Since at 
the percolation threshold the probability for the existence of the infinite percolation 
cluster is precisely zero, the probability of coming across a spanning cluster becomes 
increasingly lower with increasing lattice size and we actually simulate a rather small 
lattice size (80x 80). The choice of the origin is immaterial as we check the cluster 
connectivity incorporating the periodic boundary condition. Let CNM(x ,  y )  be the 
number of N-stepped  SAW^ having M nearest neighbours between non-consecutive 
vertices which terminate at the point (x ,  y ) ,  starting at (0,O). The average end-to-end 
distance for a particular configuration is given by 

where E = exp[l/kT], with unit interaction between the nearest neighbour sites visited 
by a SAW. 

On the criticai permiation ciuster, we enumerate exaaiy aii the CNM(x ,  y )  SAWS, 

starting from a suitable origin on the cluster. Then we evaluate the square of the 
average end-to-end distance ( R L )  from equation (2) for a particular configuration of 
the cluster. The values of ( R L )  are then evaluated over a wide range of temperatures 
T. We repeat this operation for 250 different configurations and vary the step size from 
N = 9 to 31 (total CPU time used is 70 hours on an Intel 80486-based computer). The 
_"_I ~ -c - I=-rlr? / & T I \  il r.bnn frnm I c tn I n n  ~ i ~ . h  ,,,- +.tr the mnfi.llratinnal ,a,,*r "1 0 \-'"yL', ,,I J, ,Y .L"II. ..., Lv-v'". . ......., .... ...-.. ..._ ~ -....D-.-..-..-. 

average of the end-to-end distance squared (RL) at different temperature for each step. 
( R L )  for a pure square lattice is also estimated for SAWS with step size from 7 to 

18 (the CPU time used is 9 houn for N =  18 using the same computer) in the above 
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range of temperatures. Since the values of U, 4 and 0 are well known for a pure lattice 
[9], we determine the values of those quantities as a check of the scaling law fitting 
procedure. 

To obtain the values of U', 4 and B we proceed as follows. For best choice of the 
quantities U', 4 and 0 in the scaling relation ( l ) ,  we expect that all exp&mental points 
collapse on to a single curve. For th:s purpose we plot f(x) [ - (R 'N) /N2"e]  as a 
function of x [E N4r] for various combinations of U', 4 and 0. For the percolation 
cluster series data, the optimal choices for these quantities are U' = 0.74*0.02, 4 = 
0.2rtO.1 and 0=0.71rt0.08 (see figure 1) .  It may be noted that the curve shown in 
figure 1 comes from the collapse of about 874 points (coming from 23 N values for 
9 s N s 31 at every temperature with 38 different temperatures considered). It may 
also be mentioned that, although the fitting is not very sensitive to minor changes in 
the value of 4, it is very sensitive to the values of B and U'. In fact, we find the fitting 
curve to be visibly destroyed for B > 0.8 and B ~ 0 . 6  and for U'> 0.76 and U' <0.72. 
As a check and for comparison, the same fitting is repeated for the series data on a 
puresquare1attice.Thecombinationof B =  1.4rt0.1, U'= u~=0.6*0.2andr$ =0.4*0.1 
gave the best fit (see inset figure 1). These values for the pure lattice case, obtained 
here using this scaling fit method, agree fairly well with the previous known estimates 
[9], the deviations being due to the small step size ( N  S 18) considered. 

zI 1.5 

-2 0 2 4 

x 

Figure 1. Plot of/(x) (=(x)/N"*) against x (= N%) far the series data of SAWS on 
a bond diluted square lattice at the percolation threshold, with the best fit choice Y' = 0.74, 
6 = 0.2 and 0 = 0.71. The inset is for a pure lattice (with +! = 0.6, @ = 0.4 and .9 = 1.4). 

We also plot In((=)) against In N at different temperatures. Since the variation 
in N covers a wide range ( 9 6  N S 3 1 ;  for percolation cluster series data), the slope 
of the straight line fit is expected to give a reasonable estimate of the effective size 
exponent U at different temperatures (see inset figure 2). In figure 2 we plot these U 
values as a function of temperature. At low temperatures (0.5 < T < 0.6) Y is seen to 
Saturate to a (collapsed phase) value U' = 0.73, while saturation at the high temperature 
region is not obtained for the temperature range studied (TS 2.5). Since no saturation 
in Y value is observed in the high temperature range and the U value already reaches 
about 0.76 for the highest temperature considered, we believe us- '0.76 on a ZD critical 
percolation cluster. 



2748 K Barat et al 
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Figure 2. The effective size exponent Y as a function of temperature T from series data 
far Saws on a k n d  diluted square lattice at the percolation threshold. The inset shows 
the plot of ln((R&)) against In(N) for three different temperatures: ( a )  0.34, ( b )  0.72 and 
(e j  2.5. 

The collapse of data as shown in figure 1 is an optimum one and the best-fit values 
for the parameters YO, 6 and + (given above) have some spread which could not be 
eliminated because of the configurational fluctuations in the values of ( R L ) .  These 
fluctuations are, however, not much as can be seen from the raw data for (RL) for 
some typical temperatures, shown in the inset figure 2. Here, of course, the plots being 
on a log scale, fluctuations become less than the symbol size. 

3. Discussion 

Firs!, we note !h~! !he best=!% esti~a:e af B, B =!A?! i 0.08, agrees -;ev *$e!! e:$ :he 
estimate ( 8  = K;'=0.67+0.06) from a similar study for the partition function zeros 
on the same lattice [6]. In fact, as mentioned before, this fitting procedure is quite 
sensitive to the choice of the &value. Also, a non-vanishing value of the &point on 
the critical percolation cluster is quite significant in view of the extremely ramified 
structure of the percolation cluster and indicates the significance of the blobs (multiply 
connected regions) [lo] of the fractal structures for the SAW statistics. Also, it shows 
the collapse phase of the SAWS on the critical percolation cluster at T < 8 where we 
find the size exponent U' to be around 0.73. However this estimate (from figure 2) is 
not expected to be accurate, the exponent value being considerably larger than the 
inverse of the fractal dimension d,' (=0.62) [ l l ]  of the percolation cluster backbone, 
it indicates considerable frustration problem [I21 of compactification in the collapsed 
phase. The same kind of estimate (see figure 2) suggests us > 0.76 for SAW size exponent 
for T >  8, as no saturation could be observed for the temperature range considered 
( T  6 2.5). This trend for an increased value of us is also consistent with other series 
study estimates [3,5], which indicate us=0.8,  compared to U: =t=0.75 for a pure ZD 
lattice (however, see [13]). Of course, Monte Carlo studies [2] do not indicate a similar 
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increase in us. The reason [12] for such discrepancies seems to be the fact that the 
percolation fractal contains self-similar blobs of all sizes (length scale) connected by 
linearly or singly connected links [lo], through which the diffusion of the SAW in the 
Monte Carlo method becomes extremely difficult (effective barrier height increases 
exponentially with the link length). This forces the Monte Carlo generated SAWS on 
the percolation cluster to be confined practically to a single blob and the SAW misses 
the enormous amount of configurational entropy in the next blob, which would be 
avaiiabie once it diffuses through the iink barrier. For smaii step sizes, therefore, the 
SAW sees the fractal structure of the typical blob (in which the SAW finds itself), giving 
effectively the us for its size exponent. As it grows beyond the length scale up to which 
the blob appears as fractal (which, in turn, depends on the size of the percolating 
lattice considered), the size exponent crosses over to that (U:) for the compact Euclidean 
lattice, and when step size increases further the SAW makes a further crossover to an 
even smaller size exponent uC (= 0.73 in ZD, as obtained here) for the collapsed phase. 
In exact enumeration, however, the SAW is forced to see the fractal beyond a single 
blob in which a Monte Carlo generated SAW becomes typically localized due to the 
exponentially large entropic barrier trap. 

Most importantly, the scaling fit of these series results given U' =0.74*0.02, which 
is considerably higher than its pure lattice value U," (=$=0.57) in ZD. Although a 
significant increase in the tricritical size exponent was predicted by the Floe approxima- 
tions for v s  [7,8], the predicted values do not compare well. The approximation of 
Roy et al [7] suggests a change from u:=0.58 (on a pure lattice) to U' ~ 0 . 6 8  on a 2~ 

critical percolation cluster (and U' =+ at d 32.4  on the pure lattice and at d 3 6  on 
the percolation cluster; see the appendix). The approximation of Chang and Aharony 
[8] gives ue=0.72. However, since the same approximation gives u:=0.66 for the 
pure lattice (compared to u,B=+=O.57 in the two-dimensional case), the agreement of 
this predicted value with our series study estimate of U' may be accidental, 
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Appendix 

Radius of gyration distribution and Flory approximant for U' 

Let us consider, following Lhuiller [141 and Roy et a1 [7, 121, the form of the polymer 
radius of gyration ( R )  distribution P(R)  such that the distribution vanishes if R is 
outside the bonds N' G R 6 N b  

P(R) - exp[-N{(N'/R)" + (R/Nb)*)] a, s > 0. (AI) 

ihe 
above bounds. The maximum value of P(R) occurs at the most probable size R, of 
the polymer: 

-:. ,n,s form for P(,?) efijures ihai ;(Rj decays expoiieniia::y io 2eio as R 

JP(R,)/dRN = O  at R, - N' (A21 
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where 

V = ( a  + Kb)/(l+ K )  K = S / ( I .  

(a)  For SAWS on a pure lattice in the high temperature limit (random SAW limit) 
N'Id s R 6 N. In this case (I = d ensures the proper two-body interaction term in the 
Flory free energy F(R)-In P ( R ) .  Similarly S = 2  gives the elastic term in F ( R ) .  

One thus gets [141 U =  v , " = 3 / ( d + 2 ) ,  the Flory exponent in this (SAW) limit. 
( b )  For SAWS on a pure iaitice at the @-point, the appropriate bound was suggested 

to be [71 N'Id s R s  N":. In this limit a = 2d ensures the proper three-body term in 
the free energy F ( R ) .  Again S = 2 here gives the elastic term in F ( R ) .  

One then gets [7] v = u , " = ( d + 5 ) / [ ( d + 2 ) ( d + l ) ] .  For d = 2 ,  the F ( R )  obtained 
here (and also the U," value) is the same as that obtained from various screening 
considerations [7]. This gives U," = 0.58 in d = 2 and U," becomes equal to f a t  d = d ,  = 2.4, 
so thzt the !&e-body rep!sive term vznishes (becszes ixdepexdent sf ."I) axd :-& = f 
for d 2 d,- 2.4. This approximation therefore suggests that the upper critical 
dimensionality is less than three (of course U& = f  in d = 3). 

( c )  For SAWS on the percolation clusters, N'Idss  R s N'Id,i. where d ,  and dmi. 
denote the percolation backbone dimension and the shortest chemical path dimension 
respectively [IO]. K (= S / ( I )  should incorporate here the spectral (random walk) 
dimension of the percolation cluster for the elastic energy term [7], such that [7,12] 

V =  ~ ~ = ( d , , . + K d , ) / d , d , , . ( l + ~ )  (A3) 

where K = dwdmi./dB(dw- d,,.). 
Here, dw denotes the random walk dimension on the percolation cluster. This same 

expression was obtained earlier by Aharony and Harris [4] in a different way. This 
gives us = 0.77, 0.66 and f in d = 2, d = 3 and d 

( d )  For SAWS at the 0-point on the percolation cluster the appropriate bound is 
assumed to be [7] N"dns R s N". The value Of K here corresponding to the three-body 
interaction then gives [7,12] 

U =  v e = ( l + K d n u s ) / d B ( l + K )  (A4) 

6 respectively. 

where K = dWdmi./2dn(dw- d,,,,"). 
This gives U' = 0.68, 0.61 and i in U = 2, d = 3 and d 3 6 respectiveiy. Note tnat 

the upper critical dimensionality for the &point on the percolation cluster here also 
shifts to d ,  = 6 .  
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